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ABSTRACT

Portfolio optimisation is one of the most crucial issues in investment decision-making and has received 
considerable attention from researchers and practitioners. Traditionally, the portfolio optimisation models 
are formulated based on the assumption that investors have complete information on the distribution of 
random returns. However, in real life case, this is not possible since decisions have to be made under 
uncertainty. This paper deals with a fuzzy portfolio optimisation problem in which returns and turnover 
rates of securities are represented by fuzzy variables. A goal programming model is proposed to optimise 
three objectives: maximisation of portfolio return, maximisation of liquidity and minimisation of the 
portfolio risk. The cardinality constraints, floor and ceiling constraints are also taken into consideration. 
Finally, a numerical experiment using real data is conducted to demonstrate the applicability of the model.
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INTRODUCTION 

Over the past few decades, portfolio optimisation problem has become one of the most 
interesting topics in the field of financial management and investment. Its basic formulation is 
based on selecting a set of securities among a number of available ones which can best meet the 
investor’s goal. The first portfolio selection model was introduced by Markowitz in 1952. The 

model, also known as mean-variance model, 
has become a basis for the development of 
modern portfolio theory. In Markowitz’s 
approach, the problem is formulated based 
upon two criteria: the portfolio return and the 
portfolio risk. The portfolio return is described 
by the mean return of the securities while the 
portfolio risk is quantified by the variance 
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of returns between the securities. The mean-variance model assumes that a rational investor 
wishes to maximise the portfolio expected return for a given level of risk, or alternatively, the 
investor wants the lowest portfolio risk for a given level of expected return.

Although the mean-variance model has been widely accepted for its theoretical reputations, 
it has not been applied extensively to construct a large-scale portfolio (Konno & Yamazaki, 
1991). This is mainly due to the difficulty of handling a large-scale quadratic programming 
problem with a dense variance-covariance matrix. In order to alleviate this difficulty, several 
attempts have been made to transform the quadratic problem into a linear one. Konno and 
Yamazaki (1991) proposed mean absolute deviation as a new measure of risk to replace 
the variance in Markowitz’s model. The authors showed that the mean absolute deviation 
model is equivalent to the mean-variance model when returns are assumed to have a normal 
distribution. Motivated by Konno and Yamazaki’s work, Speranza (1993) proposed mean semi-
absolute deviation to evaluate risk in portfolio selection model. This risk measure describes 
the preferences of investors in a more realistic way since it only considers return below the 
mean. From a computational point of view, Speranza (1993) showed that the semi-absolute 
deviation reduced the number of required constraints by half in comparison with the mean 
absolute deviation. 

In the above-cited works, portfolio return and risk are considered as the only main factors 
that impact an investor’s decision. However, many have argued that some of the relevant 
information for selecting a portfolio can never be completely captured in terms of these 
two criteria. There are other considerations that might be important to investors. As a result, 
numerous portfolio optimisation models that consider  criteria other than risk and return have 
been developed in recent years. Ehrgott et al. (2004), for example, extended the mean-variance 
model by formulating a hierarchy of objectives, which breaks down risk and return into five 
sub-objectives and employed a multi-criteria decision-making method to solve the problem. 
Gupta et al. (2008) proposed a portfolio optimisation model based on semi-absolute deviation 
function. Their model considers multiple objectives which are short term return, long term 
return, annual dividend, risk, and liquidity. Li and Xu (2013) presented a multi-objective 
portfolio selection model with fuzzy random returns for investors. Their model optimizes three 
objectives, namely, return, risk and liquidity.

One of the most popular and promising techniques to handle portfolio optimisation problem 
with multiple and conflicting objectives is goal programming. Developed by Charnes and 
Cooper in 1961, it focuses on minimising  deviations between the realised goal and the desired 
target. The minimisation process can be achieved using different approaches, each one leads 
to several variants of goal programming. Unlike linear programming that seeks for an optimal 
solution, goal programming attempts to look for a satisfactory solution that comes as close as 
possible to the desired goals. According to Arenas-Parra et al. (2010), the main advantage of 
goal programming approach is it provides decision makers with enough flexibility to include 
numerous variations of constraints and goals into a model. 

Goal programming approach which is a branch of multi-objective optimisation has been 
extensively and successfully applied to formulate portfolio selection problems(see Pendaraki 
et al., 2005; Sharma & Sharma, 2006; Stoyan & Kwon, 2011; Tamiz et al., 2013). Most of the 
models however, assume that the future returns of security are dependent on random variables. 
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In practical investment, many other uncertain factors  affect the stock markets such as economy, 
policies, laws and regulations (Liu & Zhang, 2013). Under such situations, fuzzy set theory 
initiated by Zadeh (1965) has become a useful tool in managing the vagueness and ambiguity 
of security returns. In recent years, much research has been done on portfolio optimisation 
problems in fuzzy environment. For instance, Carlsson et al. (2002) introduced a possibilistic 
approach for selecting portfolios with highest utility score based on the assumptions that the 
security returns are characterised by trapezoidal fuzzy numbers. Vercher et al. (2007) presented 
portfolio optimisation models under downside risk approach using interval-valued probabilistic 
and possibilistic means. Zhang et al. (2007) proposed two portfolio selection models based on 
lower and upper possibilistic means and possibilistic variances of fuzzy numbers. In addition, 
Huang (2011) proposed two credibility-based minimax mean-variance models for fuzzy 
portfolio selection problem in the situation that each security return belongs to a certain class 
of fuzzy variables.

This paper deals with a portfolio optimisation problem in fuzzy environment. We propose 
a goal programming model by considering three objectives which are minimisation of portfolio 
risk, maximisation of portfolio return and maximisation of liquidity. The returns and turnover 
rates of securities are characterised by fuzzy variables. In addition, the model  includes practical 
constraints such as cardinality constraints, floor and ceiling constraints. 

The remaining part of this paper is organised as follows: Section 2 introduces some 
basic concepts of fuzzy numbers while Section 3 presents the formulation of a fuzzy goal 
programming model for portfolio optimisation problem with practical constraints. Section 4 
illustrates a numerical example of the proposed model along with the corresponding results. 
The final section (Section 5), ends with some concluding remarks.

PRELIMINARIES

In this section, we define some basic concepts about fuzzy numbers and the expected value 
of a fuzzy number which will be used in the following sections. A fuzzy number A is a fuzzy 
set of the real lineℜ , characterised by means of a membership function ( )xAµ which is upper 
semi-continuous and satisfies the condition ( ) 1=ℜ∈ xsup Ax µ , and whose γ -cuts, for 10 ≤≤ γ :  
[ ] ( ){ }γµγ ≥ℜ∈= xxA A: , are convex sets.

A fuzzy number A are called trapezoidal with tolerance interval [a; b], left width α   
 and right width β   if its membership function has the following form:

	 (1)
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and it can be written as ( )βα ,,b,aA = . Then, the γ -level sets of A can easily be calculated as

[ ] ( ) ( )[ ]βγαγγ −+−−= 11 b,aA ,		  [ ]10,∈∀γ ,

Let A be a fuzzy number with [ ] ( ) ( )[ ]γγγ
21 a,aA = , [ ]10,∈γ . Carlsson and Fullér (2001) 

defined the lower and upper possiblistic expected value of fuzzy number A as

( ) ( ) γγγ daAE~ ∫=∗

1

0
12 		  (2)

( ) ( ) γγγ daAE~ ∫=∗
1

0
22 	 (3)

		   		   

The interval-valued and crisp possibilistic expected values of fuzzy number A are defined 
as (Carlsson & Fullér, 2001)

( ) ( ) ( )[ ]AE~,AE~AE~ ∗
∗= 	 (4)

( ) ( ) ( )
2

AE~AE~AE
∗

∗ +
= 	 (5)

		

MODEL FORMULATION

Assume that there are N securities available for trading in stock market. The return rates 
of the N securities are denoted as trapezoidal fuzzy numbers. The reason is that it can 
represent quite well the empirical distribution of security returns which have asymmetric 
and fat tails.

Following Vercher et al. (2007), the tolerance interval [a, b], left width α  and right 
width β  of the fuzzy return for every security j are computed based on the percentiles of  
data distribution of the security return. Using this approach, the imprecise estimation of the 
expected return of each security can be simply and clearly represented based on actual data. 
For ease of description,  basic notations used in this study are defined in Table 1.
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Table 1
Basic Notations

Index
j Set of securities, N,,j 1=

Decision variables

jx Proportion invested in security j

jq Binary variable which will be 1 if any of security j  is held and 0 otherwise
and 0 otherwise

Parameters

jr Return rate of security j
jL Turnover rate of security j
jδ Upper limits of the budget that can be invested in security j
jυ Lower limits of the budget that can be invested in security j

K Desired number of securities to be included in the portfolio

Model’s Objective

In the proposed multi-objective portfolio optimisation problem, the following objectives were 
considered.

Portfolio return. The portfolio return is the most practical objective which is usually 
used in portfolio optimisation models. In this paper, the return rates of the j th asset are 
characterised by the trapezoidal fuzzy numbers ( )jjjjj ,,b,ar βα=  whose γ -level cuts are 
[ ] ( ) ( )[ ]βγαγγ −+−−= 11 b,arj  for [ ]10,∈∀γ . Therefore, the total return of a portfolio 

( )nx,,x,xx 21=  is the following trapezoidal fuzzy number

( ) ( ) ( ) ( )( )xD,xC,xP,xP

x,x,xb,xa

xrP

ul

N

j

N

j

N

j

N

j
jjjjjjjj

N

j
jj

=









=

=

∑ ∑ ∑ ∑

∑

= = = =

=

1 1 1 1

1

βα

The γ -level cuts of P are computed as

[ ] ( ) ( ) ( ) ( ) ( ) ( )[ ]xDxP,xCxPP ul γγγ −+−−= 11
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Based on the equation (2), (3), (4) and (5), we can obtain the lower and upper possibilistic 
means, the interval-valued and crisp possibilistic mean values of the portfolio return as follows:

Thus, the possibilistic mean value of the return on portfolio ( )nx,,x,xx 21=  is 
given by

( ) ( ) ( ) j

N

j
jjjj xbaPE ∑

=






 −++=

1 6
1

2
1 αβ 	 (6)

	
Portfolio risk. The portfolio risk is measured by the possibilistic semi-absolute deviation 
which is defined by Vercher et al. (2007) as	

( ) ( ){ }( )PPE~,EPw~ −= 0max 	 (7)

Proposition 1: (Carlsson & Fullér, 2001) Let  ( )jjjjj ,,b,ar βα=  be the trapezoidal return 
on the j th asset, N,,j 1= , and let ( ) ( ) ( ) ( )( )xD,xC,xP,xPP ul= be the total return of 
the portfolio ( )nx,,x,xx 21= , then

a)  ( ){ } ( ) ( ) ( ) ( )





 +−=− xC,,xDxPxP,PPE~, lu 0

3
00max

b)  ( ) ( ){ }( )PPE~,EPW~ −= 0max  = ( ) ( ) ( ) ( )




 +

+−
3

0 xDxCxPxP, lu
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Based on the Proposition 1, the interval-valued possibilistic semi-absolute deviation can 
be expressed as follows:

( ) ( ) ( ) ( ) ( )




 +

+−=
3

0 xDxCxPxP,Pw~ lu

Thus, the crisp possibilistic semi-absolute deviation of the return associated with the 
portfolio ( )nx,,x,xx 21=   is given by 

( ) ( ) ( ) ( ) ( )

( ) ( ) j

N

j
jjjj

lu

xab

xDxCxPxPPw

∑
=







 ++−=

+
+

−
=

1 6
1

2
1

62

βα
		  (8)

Liquidity. In practical investment, liquidity is also one of the main concerns for investors. 
Liquidity can be defined as the ability to easily sell a security without affecting its price in the 
market and without incurring a significant loss. It can be computed using turnover rate which 
is the proportion between the average stock traded at the market in the most recent month 
and the outstanding shares of that stock for that month. In this study, the turnover rates of 
security j are denoted by trapezoidal fuzzy numbers  since they cannot 
be accurately predicted. The γ -level cuts of jl  are  
for [ ]10,∈∀γ . Thus, the liquidity of a portfolio ( )nx,,x,xx 21=  is the following 
trapezoidal fuzzy number

( ) ( ) ( ) ( )( )xG,xF,xQ,xQ

xl,xl,xlb,xla

xlL

ul

N

j

N

j

N

j

N

j
jjjjjjjj

N

j
jj

=









=

=

∑ ∑ ∑ ∑

∑

= = = =

=

1 1 1 1

1

βα

Based on the equation (2), (3), (4) and (5), the interval-valued and crisp possibilistic mean 
values of the portfolio liquidity can be expressed as

( ) ( ) ( ) ( ) ( )



 +−= xGxQ,xFxQLE~ ul 3

1
3
1

( ) ( ) ( )( ) ( ) ( )( )xFxGxQxQLE ul −++=
6
1

2
1
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Therefore, the crisp possibilistic mean value of the turnover rate of the portfolio can be 
expressed as follows:

( ) ( ) ( ) j

N

j
jjjj xlllblaLE ∑

=






 −++=

1 6
1

2
1 αβ 	 (9)

Constraints

There are two types of constraints: theoretical and practical. The theoretical constraint is 
necessary in order to define the feasibility of a solution.

Budget constraint. Budget constraint is imposed in order to normalise the solution. It ensures 
that all the available capital are invested. This constraint can be written as follows:

1
1

=∑
=

N

j
jx

Floor and ceiling constraints. Floor constraints are used in practice to avoid the cost of 
administrating very small portions of securities which will have a negligible influence on the 
portfolio’s performance. Ceiling constraints are imposed to limit the excessive concentration of 
the portfolio to a specific security. By introducing a binary variable jq , (equal to 1 if security j 
is in the portfolio and 0 otherwise) the constraint can be expressed as follows:

jjjjj qxq δυ ≤≤ 	 j = 1, 2, . . . , N

Cardinality constraints. Cardinality constraints limit the total number of securities held in a 
portfolio. This constraint is imposed to simplify the management of the portfolio and to reduce 
transaction costs. This constraint is formulated as follows:

Kq
N

j
j =∑

=1

Goal Programming

Basically, there are three variants in goal programming which are lexicographic, weighted and 
MinMax goal programming. Lexicographic goal programming approach assigns pre-emptive 
priority to different goals in order to minimise the sum of the unwanted deviation variables. 
The weighted goal programming approach assigns weights to  goal deviations based on their 
relative importance and seeks to minimise the total weighted deviations of the goals. Finally, 
the MinMax goal programming attempts to minimise the largest unwanted deviation from the 
desired goals.  
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In this paper, we employed the lexicographic goal programming approach which requires 
ranking the goals in order of importance. A goal placed at the higher priority level is infinitely 
more important than a goal placed at the lower priority level. The problem is then solved by 
meeting the highest priority goal first as closely as possible before proceeding to the next 
priority goal. The procedure continues until the goal placed at the lowest priority level is 
solved. Using this approach, the solution achieved by a higher priority goal is never degraded 
by a lower priority goal.

The framework of pre-emptive goal programming model can be formulated as follows 
(Jones & Tamiz, 2010):

Lex min ( ) ( )[ ]+−+−= iipii d,dh,,d,dha 1

subject to,

	    ( ) iiii gddxf =−+ +− 	 m,,i 1=

	    Fx∈

	    0≥x

	    0≥+−
ii d,d 			   m,,i 1=

where −
id  and  +

id  are the negative and positive deviational variables attached to the goal i, 
( m,,i 1= ), ( )xfi is the mathematical expression of the ith goal, ig  is the target value of 
goal i, x is the vector of the decision variables, F is a set of hard constraints that may exist in 
the model, hs is the index set of goals placed in the sth priority level and a is the lexicographic 
optimisation process.

Formulation of the Goal Programming Model

The first goal is to obtain the maximum possible return on the investment. This goal is 
formulated to minimise  negative deviation. From equation (6), this goal can be expressed as 
follows:

( ) ( ) 111
1 6

1
2
1 gddxba j

N

j
jjjj =−+





 −++ +−

=
∑ αβ

where 1g is the desired portfolio return. The second goal is to reduce the portfolio risk to  
a certain level. To achieve this goal, the positive deviation is minimised. Thus, from equation  
(8),

( ) ( ) 222
1 6

1
2
1 gddxab j

N

j
jjjj =−+





 ++− +−

=
∑ βα
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where 2g is an acceptable level of risk. The third goal is to maximise the portfolio liquidity.  
This goal is formulated by minimising the negative deviation. From equation (9), this goal is 
given by

	

( ) ( ) 333
1 6

1
2
1 gddxlllbla j

N

j
jjjj =−+





 −++ +−

=
∑ αβ

where 3g  is an acceptable level of liquidity. Based on the above discussion, the goal 
programming model for portfolio optimisation problem is formulated as follows:

Lex min ( )−+−= 321 d,d,da
subject to,

		  ( ) ( ) 111
1 6

1
2
1 gddxba j

N

j
jjjj =−+





 −++ +−

=
∑ αβ

		  ( ) ( ) 222
1 6

1
2
1 gddxab j

N

j
jjjj =−+





 ++− +−

=
∑ βα

		  ( ) ( ) 333
1 6

1
2
1 gddxlllbla j

N

j
jjjj =−+





 −++ +−

=
∑ αβ

		  1
1

=∑
=

N

j
jx

		  jjjjj qxq δυ ≤≤ 	 j = 1, 2, . . . , N

		  Kq
N

j
j =∑

=1

		  0≥jx 		  j = 1, 2, . . . , N

		  0≥+−
ii d,d 		  j = 1, 2, . . . , N

		  { }10,q j ∈ 		  j = 1, 2, . . . , N

NUMERICAL EXAMPLE

Data

In this study, the model was tested on 100 Shariah-compliant stocks listed on the main board 
of Bursa Malaysia. The distributions of the selected securities in the corresponding sectors 
are shown in Table 2.
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Table 2
Number of stocks in the sample per sector

Sector Number of Securities Decision Variables

Consumer 14

Industrial 33

Technology 4

Plantation 6

Construction 5

Properties 11

Trading and Services 23

Infrastructure 3

Finance 1

Total 100

The historical data consist of closing prices and turnover rates of all securities starting from 
January 2008 until December 2012. All data are collected from Datastream software. Data of 
monthly closing prices were transformed to monthly rate of returns using the formula below:

1

1

−

−−
=

t

tt
t p

pp
R

where tp  and 1−tp  are the stock prices at time t and t – 1 respectively.
In this study, since the future return rates and turnover rates of the securities were assumed 

to be trapezoidal fuzzy numbers, the tolerance interval, left width and right width of the fuzzy 
numbers were approximated using sample percentiles method introduced by Vercher et al. 
(2007). First, we calculate the 5th, 40th, 60th and 95th percentiles of the samples using historical 
data. Then, we set the interval [P40, P60] as the core and the quantities P40 – P5 and P95 – P60 
as the left and right spreads respectively, where Pw is the wth percentile of the sample. Thus, 
the possibility distribution of security j is obtained, that is, , ,  
and . 

In this example, the minimum investment in each stock is 3% and the maximum investment 
must be of 20%. We also assume that the acceptance level of b1, b2 and b3 are 0.03, 0.05 and 0.10 
respectively. In order to illustrate the effect of number of securities on the portfolio selection, 
we vary the value of K from 10 to 15. The problems were solved using MATLAB R2014a and 
the results are presented in Table 3. 



Mokhtar, M., Shuib, A. and Mohamad, D.

604 Pertanika J. Sci. & Technol. 25 (2): 593 - 606 (2017)

Table 3
Return, Risk and Liquidity of Portfolio

Objectives
Selected stocks

K Return Risk Liquidity

10 0.03 0.0495 0.10

11 0.03 0.05 0.10

12 0.03 0.0492 0.10

13 0.03 0.05 0.10

14 0.03 0.0494 0.10
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Table 3 (continue)

Objectives
Selected stocks

K Return Risk Liquidity

15 0.03 0.05 0.1012

The first column in Table 3 shows the desired number of securities. Columns 2 to 4 contain 
the return, risk and liquidity of the optimal solutions while the last column shows the selected 
securities of the optimal portfolio. From this table, it can be seen that the return goal for all 
portfolios are completely satisfied which indicates that the target value set for this goal is 
realistic and achievable to the degree that there is no room for possible further improvement. The 
second goal of minimising the portfolio risk is fully achieved when the numbers of securities 
are 11, 13 and 15. However, the risk for portfolio with 10, 12 and 14 securities has been reduced 
by 0.0005, 0.0008 and 0.0006. Finally, if we vary the number of securities in a portfolio from 
10 to 14, the liquidity goal is completely satisfied. For portfolio with 15 securities, the liquidity 
goal is shown to be about 0.0012, more than the target value of 0.10.
 
CONCLUSION

This paper is concerned with multi-objective portfolio optimisation problem in a  
fuzzy environment. Based on semi-absolute deviation as the risk measure, a goal  
programming model is proposed in which three objectives are optimised in a lexicographic 
order. The three objectives are: minimisation of portfolio risk, maximisation of portfolio  
return and maximisation of liquidity. Additionally, the model also considers three practical 
constraints which are cardinality, floor and ceiling constraints. A numerical example using real 
data from Bursa Malaysia is also presented to illustrate the modeling concept.  The results 
indicate that the proposed model could generate satisfying portfolio selection strategies to 
investors. 

Finally, future research may be conducted to investigate the impact of inclusion of other 
real-life constraints such as minimum transaction lot and sector diversification constraint in 
the model.
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